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Abstract. Neutron Laue diffraction combined with the maximum-entropy method yields a
powerful tool for direct observation of the density distribution of dynamically disordered molecules.
Laue diffraction investigation delivers a systematically incomplete data set in a very much shorter
time than using a conventional four-circle diffractometer, and the maximum-entropy method is an
easy tool to use to cope with the gaps in the data set. From the calculated proton-density distribution
the molecular hindering potential was successfully derived in the case of Ni(ND3)6Cl2.

1. Introduction

The direct observation of the nuclear density distribution of disordered molecules is, in
principle, a standard crystallographic routine. The scattering density is obtained by calculating
Fourier maps from phased neutron data sets obtained from single-crystal diffraction. This
classical Fourier technique carries an inherent drawback: the broadening of all details by series
termination effects and the failure of the density synthesis for incomplete data sets, in particular
when strong Fourier components, i.e. intense Bragg reflections, are missing. The maximum-
entropy-method (MEM) reconstruction of the densities is, by virtue of its construction from the
principles of probability theory, an attempt to determine the most probable scattering density
from an incomplete data set. It is successful in many different applications (for a current review
of applications in crystallography, see Gilmore [1]).

In the case of dynamically disordered molecules the observed nuclear density distribution
yields a direct image of the nuclear motion or molecular dynamics. Here the MEM yields the
high quality in spatial resolution which is necessary [2–4], since an accurate density distribution
is the basic requirement for the determination of the hindering potential in orientationally
disordered molecular crystals [5, 6].

In this paper we report a new method for determining the hindering potential experienced
by the dynamically disordered NH3 molecules in Ni(NH3)6Cl2: we use the very fast data
collection available by means of neutron Laue diffraction using an image plate, and combine
it with the ability of the MEM to cope with the unavoidable gaps in the data set. The MEM
proton density obtained is then used to calculate the hindering potentials. In contrast to data
sets observed using a four-circle diffractometer, data sets obtained from Laue diffraction in
general yield an incomplete set of Bragg reflections because the wavelength distribution leads to
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multiple coincidences of reflections (h, k, l) with their corresponding higher-order reflections
(nh, nk, nl). However, Laue diffraction investigation has the advantage of delivering a data
set in a time which is an order of magnitude smaller.

This paper is organized as follows. In section 2 the basic features of the NH3 orientational
disorder in metal hexa-ammine salts are summarized. The sample preparation and experimental
set-up are described in section 3, and the results of the structural analysis in section 4. Section 5
shows the maximum-entropy reconstruction of the proton-density distribution. The analysis
of this density and a comparison of the new results with previous results obtained from other
metal hexa-ammine compounds is given in section 6.

2. Dynamical disorder in M(NX3)6Y2 compounds

Compounds of the family M(NX3)6Y2 with M = Ni, Co; X = H, D; Y = Br, Cl, I, NO3, PF6

are isomorphous. In their high-temperature phase they generally form a face-centred-cubic
lattice (space group: Fm3̄m), where the basic unit is a cube of Y ions which surround one
M(NX3)6 octahedron [5, 7] (figure 1). The incompatibility of the molecular symmetry 3m of
NX3 with the symmetry 4mm of the lattice site gives rise to the orientational disorder found in
these compounds (figure 1(b)). On cooling, various phase transitions are observed and it was
suggested that they are triggered by the freezing of NH3 groups [8, 9].

While for the low-temperature phases a detailed crystallographic description is still
lacking, in the high-temperature phases the orientations of the ammine groups are usually
described in terms of dynamical disorder between a number of different sites.

In recent studies on a series of nickel and cobalt hexa-ammine compounds in their cubic
phases [5, 6], we obtained the scattering densities from the orientationally disordered protons
and deuterons by Fourier and MEM techniques and observed a nuclear density distribution
with four maxima at the corners of a square for the compounds with Y = Br, I, NO3

(figure 2), whereas a nearly circular density distribution was found for Y = PF6. All observed
density distributions could consistently be explained as the consequence of rotation–translation
coupling in an anharmonic crystal potential. The centre of mass of the ammonia group performs
an anticlockwise rotation around the fourfold crystal axis, while the molecule rotates clockwise
around its threefold axis [5, 10].

Within the model of rotation–translation coupling, the dynamical problem of the ammonia
motion is reduced to the motion of a rigid H/D3 triangle in a plane perpendicular to the Ni–N
axis, where the observed proton density is concentrated. This motion is determined by the
time-independent two-dimensional anharmonic mean crystal potential VCr , which is expanded
into symmetry-adapted functions, according to the local site symmetry 4mm:

VCr(r, φ) = 1

2
Ar2 +

1

4
Br4 cos 4φ +

1

4
Cr4 (1)

where (r, φ) is the position of one H atom. This anharmonic potential couples the rotational
motion of the H3 triangle to its centre-of-mass motion. The parameter A denotes the strength
of the coupling whereas B and C measure the anharmonicity of the potential.

The effective molecular potential for one setting of the H3 triangle is given by the sum of
the single-particle potentials of each of the three protons:

VM(Rc, φc, β) =
2∑

p=0

VCr(rp, φp). (2)

The Boltzmann probability for one configuration (Rc, φc, β) is known to be

ρ(Rc, φc, β) = Z−1e−VM(Rc,φc,β)/kT (3)
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(a)

(b)

Figure 1. (a) The crystal structure (Fm3m) of M(NH3)6Y2, M = Ni, Co, . . . ; Y = Br, Cl,
I, . . . . The face-centred-cubic structure is built from Y cubes (black), where every second cube
is occupied by a M(NH3)6 octahedron. Hydrogen atoms are not shown. (b) Projection of one
M(NH3)6 octahedron with its surrounding Y cube. According to the local symmetry 4mm, the
ammonia molecules are shown in four split positions, leading to twelve hydrogen positions for each
ammonia molecule.

where Z is the partition function. From this the scattering length density, ρ(x, y) is obtained
by taking a configurational average:

ρ(x, y) = 3Z−1e−V 0
Cr (x,y)/kT

∫
e−(V 1

Cr+V
2
Cr )/kT dγ. (4)
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Figure 2. The Fourier density of Ni(ND3)6Br2
obtained from a neutron single-crystal experiment
on a four-circle diffractometer [5]. The cut is at
z = zD = 0.24 where the maximum deuteron
density occurs.

Thus the mean crystal potential may be determined by a least-squares analysis of the observed
densities [5, 6].

3. Neutron Laue diffraction

Single crystals were synthesized from aqueous solution. Deuterated samples were prepared
by dissolving Ni(NO3)2·6D2O in a concentrated deuterated ammonia solution to give
Ni(ND3)6(OD)2. Adding ND4Cl and heating to 70 ◦C yielded an oversaturated solution. On
cooling down to room temperature, single crystals with blue colour and octahedral shape grew.

In the Laue-diffraction experiment we used a small single crystal of deuterated nickel hexa-
ammine chloride, Ni(ND3)6Cl2. The blue, octahedral crystal had a volume of only 1.5 mm3.
We measured four neutron Laue diagrams at room temperature with different crystal settings
(φ = 0◦, 20◦, 40◦, 60◦), for 50 min each. Upon indexing and integrating the measured data,
105 symmetry-independent single Bragg reflections were obtained (94 with F > 4σF ). In
the indexing routine we used the lattice parameter a = 10.06(1) Å, which we had determined
by means of x-ray powder diffraction. The absorption correction was found to be negligible.
The extinction correction was included in the structure refinement [11]. Details are given in
table 1.

4. Structure refinement

The main purpose of the structure refinement with split-atom or split-molecule models is to
determine a set of signs for the measured |Fobs

hkl | ∼ √
I obshkl which is independent of details of

the specific model. These signed Fhkl are then used to extract the deuteron density via Fourier
techniques or MEM reconstruction. For the structure refinement we used SHELXL97 [11].
The refinement of the ammonia hydrogens follows the approach shown in [6, 10].

The rigid ammonia molecule is treated in three different split-molecule settings. For two
settings the molecular mirror plane coincides with one of the two mirror planes of the local
site symmetry 4mm. The third model consists of a molecule in a general position, which
leads to twelve H positions around the fourfold crystal axis. Within this model, refinement of
anisotropic thermal parameters turned out to be unstable. The model leading to the smallest
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Table 1. Experimental details.

Crystal data

Chemical formula Ni(NH3)6Cl2
Chemical formula weight 249.60
Crystal shape Octahedral
Crystal colour Blue
Sample volume 1.5 mm3

Temperature 295 K
Cubic space group Fm3̄m
Lattice constant a 10.06(1) Å
Cell volume V 1018.1(18) Å3

Z 4
Dx 1.623 Mg m−3

Data collection

Neutrons
Laue diffractometer at ILL
White beam: 1.0 to 1.83 Å−1

945 measured reflections
105 independent reflections
94 reflections with I > 2σ(I)
Rint = 0.0381

R-values is given in table 2. There were no significant differences among the Ni, N, Cl
parameters refined with the different models. The Ni–N bond distance is dNi−N = 2.130(4) Å,
in agreement with the distances found in [5].

The different models for the deuterium positions reveal that the density is concentrated on
a plane which is perpendicular to the respective Ni–N axis. The centre of mass of the deuterium
triangle coincides with the fourfold crystal axis; therefore the tilt angle is negligible.

However, our goal was to determine the phases of the measured |Fhkl|. The decisive point
is that as soon as hydrogens are included in the refinement there are no longer any differences
among the phases of the structure factors calculated with the different models, i.e. they are
independent with respect to the refined parameters. In this way we obtained a unique, model-
independent set of phases for the observed structure factors.

5. Nuclear density distribution

From the measured structure factors, together with the stable, ‘model-independent’ phases,
one may expect to obtain a ‘model-free’ observed scattering density, provided that the linear
inverse Fourier transform can be handled satisfactorily. For comparison, we calculated the
scattering density by standard Fourier transformation and by the maximum-entropy-method
reconstruction described below. The latter involved a discretization of the unit cell into a
128 × 128 × 128 grid.

Figures 3 and 4 show cuts through the Ni(ND3)6 octahedron parallel to the face of the unit
cube at z = 0 and z = zD = 0.24 where the maximum deuteron density occurs.

In the section at z = 0 through the scattering length density obtained by Fourier
transformation, the central Ni and the surrounding N atoms are clearly visible (figure 3(a)).
The Cl ions, located at zCl = 0.25, show up in the corresponding section at z = zD = 0.24,
due to their thermal motion (figure 3(b)). However, no deuterium contribution to the scattering
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Table 2. Results of the structure refinement with SHELXL97 [11].

Atomic parameters: x y z Occupancy Ueq

Ni 0.0000 0.0000 0.0000 1.00 0.0299(9)
N 0.2500 0.2500 0.2500 1.00 0.043(1)
Cl 0.2117(3) 0.0000 0.0000 1.00 0.0515(8)
D1 0.077(2) 0.064(3) 0.241(2) 0.25 0.074(4)
D2 0.0000 −0.074(3) 0.239(4) 0.25 0.11(2)

Anisotropic thermal parameters: u11 u22 u33 u23 u13 u12

N 0.036(2) 0.059(2) 0.059(2) 0.000 0.000 0.000
D1 0.045(5) 0.13(2) 0.052(3)−0.010(9) −0.011(5) −0.011(4)
D2 0.20(7) 0.07(1) 0.07(1) 0.01(1) 0.000 0.000

Refinement on F 2

Rall = 0.0916
R[F 2 > 2σ(F 2)] = 0.0622
wR(F 2) = 0.0776
wRobs = 0.0736

S = 1.438
Restrained S = 1.444

105 reflections
24 parameters
5 restraints

Weighting scheme:
w = 1/[σ 2F 2

o + (0.0060P)2 + 5.7676P ]
where P = (F 2

o + 2F 2
c )/3

Extinction correction:
F ∗
c = kFc[1 + 0.001χF 2

c λ
3/ sin(2θ)]−1/4

Extinction coefficient χ = 0.020(7)
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(a) (b)

Figure 3. The Fourier density of Ni(ND3)6Cl2. (a) A cut at z = 0. (b) A cut at z = zD = 0.24
where the maximum deuteron density occurs.

length density is found. The Fourier densities suffer from severe truncation errors and the
residual noise, which leads to spurious density between the atomic positions.
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(a) (b)

Figure 4. A maximum-entropy reconstruction of the density of Ni(ND3)6Cl2. (a) A cut at z = 0.
(b) A cut at z = zD = 0.24 where the maximum deuteron density occurs.

In contrast, the density reconstructed by the MEM from the same input data clearly shows
the deuterium contribution to the scattering length density (figure 4).

The deuteron density obtained in Ni(ND3)6Cl2 is concentrated on a plane perpendicular to
the fourfold crystal axis. The density in this plane shows four maxima on a square (figure 4(b)).
The distances between these maxima do not correspond to the ammonia D–D distance. In
addition, the distance to the fourfold crystal axis is larger than the rotational radius of an
ammonia group. This finding can only be explained by a movement of the ammonia centre
of mass combined with the rotational motion of the ammonia molecule, and is due to the
rotational–translational coupling found in these compounds [5].

5.1. The maximum-entropy method (MEM)

The non-linear MEM, which has its roots in probability and information theory, has been
applied to many fields of crystallography (Gilmore [1]). Such work includes: the attempt
to observe the binding electron density between Si atoms directly (Sakata and Sato [12];
Takata and Sakata [13]); application to powder data sets with overlapping reflections
(Sakata, Mori, Kumazawa, Takata and Toraya [14]); application to neutron data, where
negative scattering densities can occur (Takata, Sakata, Kumazawa, Larsen and Iversen
[15]); investigation of disordered structures (Papoular, Prandl and Schiebel [16]); polarized
neutron scattering studies (Papoular, Zheludev, Ressouche and Schweizer [17]; Schleger,
Puig-Molina, Ressouche, Rutty and Schweizer [18]); extraction of strictly positive integrated
intensities from strongly overlapping powder reflections (Sivia and David [19]); investigation
of quasicrystals (Haibach and Steurer [20]); investigation of single-crystal Laue data sets
(Bourenkov, Popov and Bartunik [21]); phase determination by statistical (direct) methods
(Bricogne and Gilmore [22]).

The MEM algorithm is an attempt to calculate the most probable density distribution with
the data given. In the case of x-ray data it incorporates the physical knowledge that the scattering
density has to be strictly positive. In the case of incomplete data sets, we usually found it to
give much better results than the simple linear Fourier transformation, where the unavoidable
gaps in the data set often lead to severe disturbances of the Fourier density calculated. Also, the
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estimated errors of observations are taken into account in the calculation. A disadvantage of
the current simple algorithm is that the MEM density calculated is not completely quantitative,
but more a qualitative density distribution: especially when high-order reflections are missing,
the MEM-density distribution of a single atom or nucleus sometimes appears to be ‘sharpened’
or ‘too peaky’.

Although the current MEM algorithms are far from being perfect (see e.g. Brummerstedt-
Iversen, Jensen and Danielsen [23] and references therein), the MEM has been shown to be
well suited for incomplete anomalous dispersion x-ray powder data sets: with the MEM
all the different types of information obtained there (from phased and unphased, unique
and overlapping reflections) can be used together in one calculation of the electron-density
distribution (Burger, Prandl and Doyle [24]; Burger [25]; Burger and Prandl [26]). The MEM
program that we used is written in FORTRAN77 and can be obtained from Internet address
http://www.uni-tuebingen.de/uni/pki without charge. It is described in detail by Burger [27]
and is essentially an enhanced version of the original Japanese program MEED (Kumazawa,
Kubota, Takata and Sakata [28]) (see the Internet address http://www.mcr.nuap.nagoya-
u.ac.jp/mem).

6. Results and discussion

The density distribution found in the present Laue-diffraction study for Ni(ND3)6Cl2 is very
similar to the density distribution observed in Ni(ND3)6Br2 (figure 2). It also shows four
maxima at the corners of a square. This clearly indicates the importance of rotation–translation
coupling in these compounds.

Therefore we used the central part of the two-dimensional map given in figure 4(b) as
input data for a refinement of the potential parameters A,B,C (1). In addition, a scale
factor s and the distance dp of the three protons from their centre of mass were refined.
The refinement converged rapidly. The refined parameters are A = −554.070(3) K Å−2,
B = 432.25(2) K Å−4, C = 1432.56(8) K Å−4, dp = 0.9620(3) Å. For comparison
with our previous results, derived from neutron single-crystal data recorded on a four-circle
diffractometer, figure 5 shows the potential parameters versus the anion radius. The new
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Figure 5. Potential parameters A,B,C of the mean crystal potential VCr (r, φ) = 1
2Ar

2 +
1
4Br

4 cos 4φ + 1
4Cr

4 (equation (1)) versus the ionic radius for a series of metal hexa-ammine
compounds. ([A] = K Å−2, [B] = K Å−4, [C] = K Å−4.)
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parameter set fits perfectly into the series of parameters obtained previously by Fourier
techniques applied to data sets obtained with a four-circle diffractometer.

In passing, we want to emphasize another aspect, namely the different amounts of beam
time required to collect these data sets. On average six days were required to make the
measurements for one single crystal of 30 mm3 volume on a four-circle diffractometer, whereas
we measured four sets at different orientations, for 50 minutes each, with a small single crystal
of only 2 mm3 volume. Thus more than a factor of 100 is gained by using Laue diffraction
and the MEM together.

Our ultimate goal is to interpret the disordered proton density using a thermodynamic
model. Measurements at different temperatures will allow us to determine the temperature
dependence of the orientational potential and thus provide an understanding of the order–
disorder phase transitions. In addition, using this technique the transition from classical motion
to quantum behaviour may be studied.

Neutron Laue diffraction combined with maximum-entropy methods yields a powerful
and effective tool for a direct observation of the density distribution of dynamically disordered
molecules. It offers a new and unique method for studying the freezing of molecules in crystals
and the associated order–disorder phase transitions.
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[25] Burger K 1997 Neue Möglichkeiten der Kristallstrukturbestimmung aus Pulverdaten durch die Nutzung
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